Iterative Methods for Optimization
This book is suitable for use as a tutorial, a reference, or a textbook in an introductory optimization course. It presents a carefully selected group of methods for unconstrained and bound-constrained optimization problems and analyzes them in depth, both theoretically and algorithmically. Readers should be familiar with the material in an elementary graduate-level course in numerical analysis, and with local convergence results for systems of nonlinear equations. The book focuses on clarity in algorithmic description and analysis rather than generality. It covers more than the traditional gradient-based opitimization; it treats sampling methods, including the Hooke-Jeeves, implicit filtering, MDS, and Nelder-Mead schemes, in a unified way, and also makes connections between sampling methods and the traditional gradient methods.
About This Book
C.T. Kelley, North Carolina State University
SIAM, 1999
ISBN: 0-89871-433-8
Language: English
Online Teaching with MATLAB and Simulink
Whether you are transitioning a classroom course to a hybrid model, developing virtual labs, or launching a fully online program, MathWorks can help you foster active learning no matter where it takes place.